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" . . .  mathematics to him . . .  was muscular 
strength and long walks over the hills and 
the kiss of a girl in love and big evenings 
spent swilling beer with your fr iends; . . .  " 

John Dos Passos [1] 

A novel topological index for the characterization of chemical graphs, derived 
from the reciprocal distance matrix and named the Harary index in honor of Professor 
Frank Harary, has been introduced. The Harary index is not a unique molecular descriptor; 
the smallest pair of the alkane trees with identical Harary indices has been detected in 
the octane family. The use of the Harary index in the quantitative structure-property 
relationships is exemplified in modeling physical properties of the C2-C 9 alkanes. In 
this application, the performance of the Harary index is comparable to the performance 
of the Wiener number. 

1. In t roduc t ion  

The numerical invariants of  chemical graphs are increasingly being used for 
a single number characterization of  the corresponding chemical compounds [2]. 
These invariants are named in the chemical literature as topological indices [3] or 
graph-theoretical indices [4]. The former term is the more common of  the two [5]. 
Topological indices have found application in various areas of  chemistry, physics, 
mathematics, informatics, biology, etc. [2-12],  but their most important use to date 
is in the non-empirical [13] quantitative structure-property relationships (QSPR) 
and quantitative structure-activi ty relationships (QSAR) [4,9, 12, 14-19].  

*Dedicated to Professor Frank Harary on the happy occasion of his 70th birthday. 
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Here, we introduce a novel topological index for the characterization of 
chemical graphs which we name the Harary index in honor of Professor Frank 
Harary, the grandmaster of both graph theory and chemical graph theory. The 
Harary index, denoted by H, is derived from the reciprocal distance matrix and has 
a number of interesting properties. Its performance in QSPR is tested in the structure- 
property correlation with several physical properties of alkanes. 

2. The definition of the Harary index and some of its properties 

The Harary index H = H(G) of a graph G is based on the concept of the 
reciprocal distance and can be obtained as a half-sum of the elements in the reciprocal 
distance matrix D r= Dr(G), 

N N 
1 

n = 7__., Z (D%..  
i=1 j=l  

(1) 

The reciprocal distance matrix D r is obtained by replacing all matrix elements (D)ij, 
representing the shortest distances between vertices i and j, in the distance matrix 
D = D(G) of a graph G by their reciprocals, 

1 
(Dr)ij - (D)ij i ;e j. (2) 

The reciprocal distance matrix was also recently used by Ivanciuc et al. [20-22].  
The Harary index for chains (depicting, for example, the carbon skeletons of 

the n-alkanes) is given by 

N-1 

H = N  
k=l 

- ( N  - 1 ) ,  ( 3 )  

where N is the number of sites (vertices) in the chain. 
The Harary index for cycles (depicting, for example, the carbon skeletons of 

[N]annulenes) is given by 

H = N + 1, N = even; 
k=l 

½(N-l) 1 
= N Z N = odd. 

k=l 

(4) 

The above definition of the Harary index parallels the definition [3] of the 
Wiener number [23] W = W(G) of a graph G, 
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N N 
1 w = (o) i j ,  (5) 

i=1 j=l 

where  (D),.j represent  the of f -d iagonal  e lements  o f  the distance matr ix  D o f  G. 
The  Wiene r  numbers  for  chains and cycles  can also be g iven  in a closed form 

[24,25] ,  

W = N ( N  2 - 1)/6, (6) 

W = (N/2) 3, N = even;  (7) 

= N ( N  2 -  1)/8, N = odd. 

Both  indices,  the Harary  index and the Wiener  index,  can be easi ly  ex tended  
to unsatura ted and he te roa tomic  systems through their  dis tance matr ices .  There  are 
several  p rocedures  available for  the const ruct ion  o f  the distance matr ix  for  these 
sys tems (e.g. ref. [21]). 

An example  o f  calculat ing the reciprocal  dis tance matr ix  and the Hara ry  
index for  a t ree T cor responding  to 2 -methy lbu tane  is g iven  in table 1. 

Table 1 

The distance matrix D, the reciprocal distance matrix D r, the Wiener 
number and the Harary index for a tree T depicting 2-methylbutane. 

5 

1 3 

T 

D = 

0 1 2 3 2 

1 0 1 2 1 

2 1 0 1 2 

3 2 1 0 3 

2 1 2 3 0 

W=18 

D ~ ~__ 

0 1 0.5 0.33 0.5 

1 0 1 0.5 1 

0.5 1 0 1 0.5 

0.33 0.5 1 0 0.33 

0.5 1 0.5 0.33 0 

H = 6.66 
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The reciprocal distance matrix D r is introduced instead of the distance matrix 
D because the latter has an undesirable feature for applications in physics and 
chemistry, that is, the matrix elements of D related to the distant sites are associated 
with large entries. This is contrary to the intuitive expectation that the distant sites 
should influence each other much less than the near sites. Thus, the matrix elements 
related to the distant sites should be associated with smaller entries than the matrix 
elements corresponding to the vicinal sites. 

A variant of the Harary index H '  = H'(G) of a graph G is based on the matrix 
containing as elements squares of reciprocal distances in G [26], 

N N 
H'  1 1 (8) 

i=i j=1 

The Harary index has scvcral interesting properties. Some of these are listed 
bclow. 

(I) The Harary indcx is a more discriminating index than the Wicner number, 
but it is not unique. The smallest pair of the alkane trees with the same index 
is given in fig. 1. The smallest pair of  cyclic graphs with the same Harary 
index is given in fig. 2. This finding is obviously also valid for a variant of  
the Harary index H'. 

O it oIo I_ ..... O 

T 1 T2 

H(T 1 ) = 15.1667 H(T 2) = 15.1667 

Fig. 1. The smallest pair of  alkane trees with the identical Harary indices. 

GI G 2 

H(G 1) = 11.3333 H(G 2) = 11.3333 

Fig. 2. The smallest pair of  cyclic graphs with the identical Harary indices. 
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Table 2 

The Harary indices (H)'and the Wiener numbers (W) for heptane isomers. 

Heptane isomer H W 

11.1500 56 

11.4833 52 

11.6167 50 

11.7500 48 

11.8333 48 

12.0000 46 

12.0833 46 

12.2500 44 

12.5000 42 

(2) The Harary index appears to be a convenient measure of  the compactness of  
the molecule. The larger the Harary index, the larger the compactness of  the 
molecule. The inverse is true for the Wiener number. This is illustrated in 
table 2 for the family of  heptanes. The least compact molecule appears to be 
n-heptane ( H =  11.15, W = 5 6 )  and the most  compac t  molecule  2,3,3- 
trimethylbutane (H = 12.50, W = 42). 
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The order of heptane isomers given in table 2 also follows the branching 
pattern of heptanes. Thus, the Harary index may also be used as a convenient 
measure of branching in alkane trees. 

In compact structures, the number of short distances increases, hence the 
Harary index is larger than in the case of extended structures. Similarly, a more 
branched structure has more short distances and the Harary index is, thus, also 
larger for more branched structures. 

The reciprocal distance matrix may also be used for detecting the center of 
a graph. The center of a graph G is the set of all central vertices [27]. A vertex v 
is a central graph if the maximum possible distance between v and any other vertex 
in G is as small as possible. This statement may be reformulated in terms of 
reciprocal distances as follows: A vertex v is a central vertex if the corresponding 
reciprocal distance sum d r is larger than for any other vertex in G. The reciprocal 
distance sum is defined as 

N 
al  = (Dr)ij. 

j=l  

(9) 

The application of the above procedure is exemplified for several graphs in fig. 3. 
The above procedure agrees in most cases with the procedure by Bonchev 

et al. [28-31], which is based on the distance matrix and hierarchy of criteria. 
However, in a few cases we differ. For example, their procedure gives as the center 
of the graph G4 (see fig. 3) vertex number 5. 

3. The use of the Harary index in QSPR studies 

We have used the Harary index and its variants for modeling eight representative 
physical properties (boiling points (bp), molar volumes (mv) at 20 °C, molar refractions 
(mr) at 20 °C, heats of vaporization (hv) at 25 °C, critical temperatures (ct), critical 
pressures (cp) and surface tensions (st) at 20 °C) of the 74 alkanes from ethane to 
nonanes. Values for these properties were taken from Needham et al. [32]. The 
Harary indices and the experimental values for the above physical properties of the 
74 C2-C9 alkanes are listed in table 3. In this table are also given the corresponding 
Wiener numbers. 

Three QSPR models were tested: 

(a) linear model 

P = A + B(TI), (10) 

(b) quadratic model 

P = A + B(TI) + C(TI) 2, (11) 
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D r = 

1 2 

G3 

0 1 0.5 0.5 1 1 0.33 

1 0 1 0.5 0.5 1 0.33 

0.5 1 0 1 0.5 0.5 0.5 

0.5 0.5 1 0 1 1 1 

1 0.5 0.5 1 0 0.5 0.5 

1 1 0.5 1 0.5 0 0.5 

0.33 0.33 0.5 1 0.5 0.5 0 

a~ 

4.33 

4.33 

4.00 

5.00 

4.00 

4.50 

3.16 

D r = 

5 7 

4 8 

G4 

0 1 0.5 1 0.33 0.25 0.2 0.2 

1 0 1 0.5 0.5 0.33 0.25 0.25 

0.5 1 0 1 1 0.5 0.33 0.33 

1 0.5 1 0 0.5 0.33 0.25 0.25 

0.33 0.5 1 0.5 0 1 0.5 0.5 

0.25 0.33 0.5 0.33 1 0 1 1 

0.2 0.25 0.33 0.25 0.5 1 0 0.5 

0.2 0.25 0.33 0.25 0.5 1 0.5 0 

a~ 

2.98 

3.83 

4.66 

2.83 

4.33 

4.41 

3.03 

3.03 

Fig. 3. Caption on following page. 
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D r = 

11 

13 1 

1 

3 

G5 

0 1 0.5 0.33 0.25 0.2 0.17 0.14 0.14 0.17 0.33 0.5 1 

1 0 1 0.5 0.33 0.25 0.2 0.17 0.17 0.2 0.5 1 5 

0.5 1 0 1 0.5 0.33 0.25 0,2 0.2 0.25 0.33 0.5 0.33 

0.33 0.5 1 0 1 0.5 0.33 0.25 0.25 0.33 0.5 0.33 0.25 

0.25 0.33 0.5 1 0 1 0.5 0.33 0.33 0.5 1 0.5 0.33 

0.2 0.25 0.33 0.5 1 0 1 0.5 0.5 1 0.5 0.33 0.25 

0.17 0.2 0.25 0.33 0.5 1 0 1 1 0.5 0.33 0.25 0.2 

0.14 0.17 0.2 0.25 0.33 0.5 1 0 1 0.33 0.25 0.2 0.17 

0.14 0.17 0.2 0.25 0.33 0.5 1 1 0 0.33 0.25 0.2 0.17 

0.17 0.2 0.25 0.33 0.5 1 0.5 0.33 0.33 0 0.33 0.25 0.2 

0.33 0.5 0.33 0.5 1 0.5 0.33 0.25 0.25 0.33 0 1 0.5 

0.5 1 0.5 0.33 0.5 0.33 0.25 0.2 0.2 0.25 1 0 1 

1 0.5 0.33 0.25 0.33 0.25 0.2 0.17 0.17 0.2 0.5 1 0 

d[ 

4.73 

5.82 

5.39 

5.57 

6.57 ¢= 

6.36 

5.73 

4.54 

4.54 

4.39 

5.82 

6.06 

4.90 

Fig. 3. T h e  iden t i f ica t ion  o f  the  cen te r  o f  severa l  g raphs .  T h e  arrow deno te s  the  g r aph  center .  

(c) biparametric model 

P = A(TI)BN c + DP3 + E, (12) 

where P = physical property, TI = topological index, N = the number of  vertices, 
and P3 = the number of  paths of  length 3. In the case of coefficients B and C being 
very small in the above model, we used the logarithmic model 

P = A ln(TI) + B In(N) + Cp3 + D. (13) 

The statistical parameters for the linear QSPR model are reported in table 4, for the 
quadratic QSPR model in table 5, and for the biparametric QSPR model in both 
versions in table 6. 
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Table 4 

Statistical parameters for the linear QSPR models. 

Physical N A B r s F 
property 

topological index = H 

bp 74 10.257 (5:0.369) -43.34 (5:5.61) 0.957 13.6 773 
my 69 4.846 (5:0.176) 88.78 (5:2.75) 0.959 4.9 760 
mr 69 1.5104 (5:0.0358) 16.463 (-+0.559) 0.982 1.0 1780 
hv 69 1.4308 (+0.0796) 16.97 (+1.24) 0.910 2.2 323 
ct 74 12.677 (5:0.457) 95.84 (+6.96) 0.956 16.9 768 
cp 74 -0.8759 (+0.0577) 39.847 (-+0.878) 0.873 2.1 230 
st 68 0.5100 (-+0.0358) 13.100 (-+0.562) 0.869 1.0 203 
mp 56 3.280 (5:0.921) - 153.9 (+ 13.3) 0.436 31.4 13 

topological index = H" 

bp 74 17.047 (+0.561) - 63.40 (+5.77) 0.963 12.5 923 
mv 69 8.306 (-+0.308) 76.53 (+3.25) 0.957 5.0 727 
mr 69 2.5097 (-+0.0640) 12.638 (-+0.675) 0.980 1.0 1637 
hv 69 2.441 (+0.141) 13.47 (+ 1.49) 0.904 2.3 300 
ct 74 21.095 (-+0.685) 70.78 (+7.05) 0.964) 15.3 948 
cp 74 - 1.468 (+0.090) 41.688 (-+0.929) 0.887 2.0 265 
st 68 0.8730 (-+0.0624) 11.823 (-+0.662) 0.865 1.0 196 
mp 56 5.55 (+1.50) - 161.4 (+14.8) 0.450 31.2 14 

topological index = W 

bp 74 1.4256 (+0.0730) 4.25 (+5.66) 0.917 18.6 381 
my 69 0.6432 (+0.0190) 113.99 (+ 1.52) 0.972 4.1 1145 
mr 69 0.19370 (+0.00676) 24.835 (+0.540) 0.962 1.5 822 
hv 69 0.19843 (:t:0.00667) 23.766 (:t:0.534) 0.964 1.4 883 
ct 74 1.697 (+0.106) 159.31 (+8.24) 0.883 27.1 255 
cp 74 -0.12693 (+0.00837) 36.155 (-+0.649) 0.873 2.1 230 
st 68 0.06203 (-+0.00551) 16.190 (-+0.444) 0.811 1.1 127 
mp 56 0.406 (-+0.140) - 135.6 (+ 10.2) 0.367 32.5 8 

F r o m  the stat is t ical  results ,  we l e am:  

(i) T h e  biparametric m o d e l  is found to be the most accura te  in all cases .  

(ii) T h e  m o s t  accura te  Q S P R  m o d e l  for  pred ic t ing  the bo i l ing  points  a m o n g s t  

cons ide red  m o d e l s  is the b ipa rame t r i c  m o d e l  (12) wi th  the W i e n e r  index.  

(iii) T h e  b ipa rame t r i c  m o d e l  wi th  all three indices  predic ts  accura te ly  the m o l a r  

v o l u m e s .  
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Table 5 

Statistical parameters for the quadratic QSPR models. 

Physical N A B C r s F 
property 

topological index = H 

bp 74 - 96.85 (+ 6.89) 21.30 (+ 1.21) - 0.4652 (+0.0500) 0.981 9.2 889 
my 69 59.64 (±8,38) 9.48 (+ 1.28) - 0.1704 (+0.0468) 0.966 4.5 456 
mr 69 9.01 (+1.61) 2.697 (+0.246) -0.04359 (+0.00895) 0.987 0.9 1203 
hv 69 5.23 (+3.87) 3.299 (+0.593) -0.0686 (+0.0216) 0.923 2.1 189 
ct 74 31.06 (+8.79) 26.04 (+ 1.55) - 0.5631 (±0.0638) 0.979 11.7 833 
cp 74 47.79 (+1.14) - 2.514 (+0.201) 0.06900 (+0.00829) 0.938 1.5 259 
st 68 9.83 (+ 1.90) 1.020 (+0.285) - 0.0185 (+0.0103) 0.875 0.9 107 
mp 56 - 182.4 (+23.6) 9.31 (+4.24) -0.259 (+0.178) 0.471 31.1 8 

topological index = H '  

bp 74 - 115.42 (+8.47) 32.34 (+2.17) - 0.947 (+0.132) 0.979 9.6 813 
mv 69 42.33 (+11.9) 16.05 (+2.63) -0 .414 (+0.139) 0.962 4.8 410 
mr 69 4.25 (+2.41) 4.489 (±0.531) -0.1015 (±0.0282) 0.983 1.0 971 
hv 69 - 1.37 (+5.59) 5.80 (+ 1.21) -0.1797 (+0.0642) 0.915 2.2 169 
ct 74 7.3 (+10.3) 39.77 (+2.65) - 1.156 (+0.161) 0.979 11.7 835 
cp 74 50.41 (±1.32) -4 .032 (+0.338) 0.1586 (+0.0205) 0.940 1.5 271 
st 68 7.88 (+2.60) 1.752 (+0.564) - 0.0465 (+0.0296) 0.870 1.0 101 
mp 56 - 194.2 (+27.6) 15.42 (±7.18) -0.623 (+0.443) 0.481 30.9 8 

bp 
m y  

m.r 

hv 
c t  

cp 
St 

mp 

topological index = W 

74 - 44.60 (+4.56) 3.569 (+0.158) - 0.01743 (+0.00124) 0.979 9.6 805 
69 97.61 (+2.18) 1.2184 (±0.0685) -0.004245 (+0.000496) 0.987 2.8 1226 
69 18.423 (+0.678) 0.4189 (+0.0213) -0.001662 (+0.000154) 0.986 0.9 1179 
69 18.763 (+0.865) 0.3742 (+0.0271) -0.001297 (+0.000196) 0.979 1.1 744 
74 90.51 (+7.20) 4.716 (+0.249) -0.02455 (+0.00196) 0.965 15.2 480 
74 40.197 (+0.796) - 0.3043 (+0.0275) 0.002442 (+0.000217) 0.923 1.7 206 
68 12.335 (+0.828) 0.1921 (+0.0254) - 0.000941 (±0.000180) 0.871 1.0 102 
56 - 151.6 (+ 15.4) 1.137 (+0.546) - 0.00606 (+0.00438) 0.406 32.3 5 

(iv) The same as in (ii) is also valid for predicting the molar refractions of 
alkanes. 

(v) The most accurate QSPR model for predicting the heats of vaporization is 
the biparametric model with the Harary index. 

(vi) The most accurate QSPR model for predicting the critical temperatures is 
the biparametric model with the Wiener index. 
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(vii) A more accurate QSPR model for predicting the critial pressures is the 
biparametric model with the Wiener index and the modified Harary index. 

(viii) The most accurate QSPR model for predicting the surface tensions is the 
biparametric model with the Harary index. 

(ix) All models are rather inaccurate for predicting melting points. This result 
was also reached by many other authors (e.g. ref. [32]). 

4. Concluding remarks 

A novel topological index, named the Harary index in honor of Professor 
Frank Harary, has been introduced. It is derived from the reciprocal distance matrix. 
The Harary index has many interesting properties. Among these is the property of 
fair discriminating power, but it is not a unique molecular descriptor. Pairs of 
graphs with identical values of the Harary index have been detected. The Harary 
index was also tested in the QSPR modeling of physical properties of the alkanes. 
In this application, it is comparable to the Wiener number, as has been conjectured, 
since these two indices are intercorrelated quantities. 
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